241 research outputs found

    The Luminosity Function for L>L* Galaxies at z > 3

    Get PDF
    Through use of multiband (U, B, R, I) photometry we have isolated high redshift (3.0<z<3.5) galaxy candidates in a survey of 1.27 deg^2 to R = 21.25 and a survey of 0.02 deg^2 to R = 23.5. Our pool of candidates constrains the nature of the 3.0 < z < 3.5 luminosity function over the range L* < L < 100 L*, if we grant a similar level of completeness to these data as for very faint samples (to R = 25.5) selected in a similar fashion. Our constraints agree with the high redshift sky density at R = 20.5 estimated from Yee et al.'s (1996) serendipitous discovery of a bright, z = 2.7 galaxy, as well as the density at R ~ 23 by Steidel et al. (1996b). We strongly rule out -- by more than two orders of magnitude at M(R) = -25 -- the L > L* luminosity function for z = 3-5 galaxies obtained by a photometric redshift analysis of the Hubble Deep Field (HDF) by Gwyn & Hartwick (1996). Our results at R ~ 23 are more consistent with the photometric redshift analysis of the faint HDF galaxies by Sawicki & Yee (1996), but our present upper limits at the brightest magnitudes (R < 21.5, M(R) < -24) allow more generous volume densities of these super-L* galaxies.Comment: Accepted for publication in ApJ Letters; 14 pages Latex, including 3 figure

    Survey incompleteness and the evolution of the QSO luminosity function

    Get PDF
    We concentrate on a type of QSO survey which depends on selecting QSO candidates based on combinations of colors. Since QSO's have emission lines and power-law continua, they are expected to yield broadband colors unlike those of stellar photospheres. Previously, the fraction of QSO's expected to be hiding (unselected) within the locus of stellar (U-J, J-F) colors was estimated at about 15 percent. We have now verified that the KK88 survey is at least 11 percent incomplete, but have determined that it may be as much as 34 percent incomplete. The 'missing' QSO's are expected to be predominantly at z less than or = 2.2. We have studied the proper motion and variability properties of all stellar objects with J less than or = 22.5 or F less than or = 21.5 in the SA 57 field which has previously been surveyed with a multicolor QSO search by KK88

    The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs

    Full text link
    We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al (2014, 2017). Many of the previous studies ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erronous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20\% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 ±\pm 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be 1.6−0.4+0.31.6^{+0.3}_{-0.4} Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of 12.5−3.4+1.412.5^{+1.4}_{-3.4} Gyr for the Galactic inner halo. This is the first time ages for all three major components of the Galaxy are obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.Comment: ApJ, in pres

    A Detailed Model Atmosphere Analysis of Cool White Dwarfs in the Sloan Digital Sky Survey

    Get PDF
    We present optical spectroscopy and near-infrared photometry of 126 cool white dwarfs in the Sloan Digital Sky Survey (SDSS). Our sample includes high proper motion targets selected using the SDSS and USNO-B astrometry and a dozen previously known ultracool white dwarf candidates. Our optical spectroscopic observations demonstrate that a clean selection of large samples of cool white dwarfs in the SDSS (and the SkyMapper, Pan-STARRS, and the Large Synoptic Survey Telescope datasets) is possible using a reduced proper motion diagram and a tangential velocity cut-off (depending on the proper motion accuracy) of 30 km/s. Our near-infrared observations reveal eight new stars with significant absorption. We use the optical and near-infrared photometry to perform a detailed model atmosphere analysis. More than 80% of the stars in our sample are consistent with either pure hydrogen or pure helium atmospheres. However, the eight stars with significant infrared absorption and the majority of the previously known ultracool white dwarf candidates are best explained with mixed hydrogen and helium atmosphere models. The age distribution of our sample is consistent with a Galactic disk age of 8 Gyr. A few ultracool white dwarfs may be as old as 12-13 Gyr, but our models have problems matching the spectral energy distributions of these objects. There are only two halo white dwarf candidates in our sample. However, trigonometric parallax observations are required for accurate mass and age determinations and to confirm their membership in the halo.Comment: ApJ Supplements, in pres

    Spectroscopy of Quasar Candidates from SDSS Commissioning Data

    Get PDF
    The Sloan Digital Sky Survey has obtained images in five broad-band colors for several hundred square degrees. We present color-color diagrams for stellar objects, and demonstrate that quasars are easily distinguished from stars by their distinctive colors. Follow-up spectroscopy in less than ten nights of telescope time has yielded 22 new quasars, 9 of them at z>3.65z> 3.65, and one with z=4.75z = 4.75, the second highest-redshift quasar yet known. Roughly 80% of the high-redshift quasar candidates selected by color indeed turn out to be high-redshift quasars.Comment: 4 pages, 3 figures, to appear in the proceedings of "After the Dark Ages: When Galaxies were Young (the Universe at 2<z<5)", 9th Annual October Astrophysics Conference in Marylan

    The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs

    Get PDF
    We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al. (2014, 2017). Many of the previous studies ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erronous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 ± 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be 1.6 +0.3−0.4 Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of 12.5 +1.4−3.4 Gyr for the Galactic inner halo. This is the first time ages for all three major components of the Galaxy are obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters

    USNO Bright Star Catalog, version 1

    Full text link
    USNO Bright Star Catalog (UBSC) is a new astrometric catalog of 1423 brightest stars covering the entire sky, which is published online. It is nearly complete to V=3V=3 mag except for three stellar systems. A combined astrometric solution of the Hipparcos Intermediate Astrometry Data and two dedicated ground-based campaigns in 2013 -- 2020 is the basis for this catalog. The astrometric parameters for each star include position coordinates, parallax, proper motion components, and their covariances on the Hipparcos mean epoch 1991.25. 64 percent of the catalog are flagged as known or suspected double or binary stars. UBSC lists 68 stars missing in Gaia EDR3 and another 114 stars without Gaia parallaxes or proper motions. The formal precision achieved for proper motions is comparable to that of Gaia.Comment: Accepted for publication in AJ. Astrometric catalog of 1423 bright stars will be published onlin

    New Halo White Dwarf Candidates in the Sloan Digital Sky Survey

    Get PDF
    We present optical spectroscopy and near-infrared photometry of 57 faint (g = 19–22) high proper motion white dwarfs identified through repeat imaging of ≈3100 deg2 of the Sloan Digital Sky Survey footprint by Munn et al. We use ugriz and JHphotometry to perform a model atmosphere analysis, and identify 10 ultracool white dwarfs with Teff \u3c 4000 K, including the coolest pure H atmosphere white dwarf currently known, J1657+2638, with Teff = 3550 ± 100 K. The majority of the objects with cooling ages larger than 9 Gyr display thick disc kinematics and constrain the age of the thick disc to ≥11 Gyr. There are four white dwarfs in our sample with large tangential velocities (vtan \u3e 120 km s−1) and UVW velocities that are more consistent with the halo than the Galactic disc. For typical 0.6M ⊙ white dwarfs, the cooling ages for these halo candidates range from 2.3 to 8.5 Gyr. However, the total mainsequence+ white dwarf cooling ages of these stars would be consistent with the Galactic halo if they are slightly undermassive. Given the magnitude limits of the current large-scale surveys, many of the coolest and oldest white dwarfs remain undiscovered in the solar neighbourhood, but upcoming surveys such as Gaia and the Large Synoptic Survey Telescope should find many of these elusive thick disc and halo white dwarfs
    • …
    corecore